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A B S T R A C T   

Upwelling ecosystems are characterized by intense seasonal productivity that supports highly dynamic species 
populations, high diversity of mid and upper trophic levels, and a myriad of important fisheries. Climate vari
ability and long-term change will impact upwelling intensity, timing and persistence, thereby potentially 
threatening resilience of coastal food webs and stability of ecosystem services. The spatial footprint of cool 
upwelled waters in the surface mixed-layer supports trophic transfer and ultimately the productivity of fisheries. 
The spatial area of upwelled water in eastern boundary upwelling systems can vary dramatically in response to 
both local and remote atmospheric forcing. These variations contribute to dynamic habitats that impact the 
structure, function, and spatial characteristics of marine ecosystems. We quantified the variability in “cool-water 
thermal habitat” area as a new ecological indicator, the Habitat Compression Index (HCI), for the nearshore 
(within 150 km of the coast) waters of the California Current Large Marine Ecosystem (CCLME). The HCI can be 
easily updated from ocean model products and satellite observations of sea surface temperature. We describe 
standardization of the HCI, regional variability, and evaluate HCI relationships with other indicators commonly 
used to inform ecosystem context within the CCLME. Importantly, our approach to calculating the HCI is easily 
extendable to other upwelling ecosystems. Further, we discuss the management context of the HCI such as 
assessing risk of whale entanglement in a highly profitable fishery, and implications for monitoring ecosystem 
shifts in coastal upwelling systems and the fisheries they support.   

1. Introduction 

Eastern Boundary Upwelling Systems (EBUS) are among the most 
productive marine ecosystems in the world, supporting some of the 
largest fisheries (Chavez and Messié 2009, Kampf and Chapman 2016, 
Checkley et al. 2009). In the California Current Large Marine Ecosystem 
(CCLME), the EBUS off the west coast of North America, coastal up
welling plays a critical role in providing nutrients essential for primary 
productivity and population growth of secondary and tertiary con
sumers, that extends from mid-water to benthic species, as well as 
attracting highly migratory air-breathing predators (Block et al. 2011). 
The spatial extent of cool upwelling habitat varies temporally and 

spatially within the CCLME and has consequences for the distribution 
and aggregation of planktonic organisms, production and distribution of 
coastal pelagic species, their predators and socio-economics of impor
tant fisheries. These changes in upwelling habitat occur on sub-seasonal 
to interannual and decadal scales, and are understood to influence 
ecosystem productivity (Hubbs 1948, Parrish et al. 1981, Chavez et al. 
2003, Di Lorenzo et al., 2013). Climate change is expected to have 
substantive impacts on upwelling ecosystems above and beyond their 
historical scope of variability, as a result of changes in a suite of complex 
and interacting factors including wind stress and upwelling intensity, 
ocean acidification, changes in source waters and changes in the 
magnitude and frequency of extreme events (Bakun et al. 2015). For 
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example, the development and multi-year persistence of large marine 
heatwaves (MHWs) are new and emerging events that impact marine 
ecosystems and fisheries that depend upon them. During the 2014–2016 
Northeast Pacific MHW, warm oceanic waters expanded into the near
shore CCLME, compressing the spatial extent of cool upwelled water and 
thus the available habitat space for coastal ecosystem processes to take 
place (Santora et al., 2020). This MHW and compression of cool-water 
habitat was associated with ecosystem shifts, a toxic algal bloom and 
changes in coastal species assemblages of predators and prey (Cavole 
et al. 2016, Santora et al. 2020), which together contributed to severe 
impacts on socio-economic systems, including fisheries (Ritzman et al. 
2018; Holland and Leonard 2020; Samhouri et al. 2021). To better 
prepare for future threats to marine life and fisheries posed by ocean 
warming, we need ecologically meaningful indicators that communicate 
dynamic shifts in pelagic habitat. 

In the CCLME, ocean climate indices (e.g., indicators for the El Niño/ 
Southern Oscillation (ENSO), or the Pacific Decadal Oscillation (PDO) 
are monitored to track ocean basin-scale patterns of cool and warm 
ocean surface temperature regimes that relate to ecosystem productivity 
patterns (Peterson et al. 2014; Schroeder et al. 2014). Ocean climate 
indices can be derived from gridded sea surface temperature (SST) 
fields, and can be provided as time series reflecting averages or anom
alies over broad regions or entire ocean basins. Although EBUSs are 
influenced by ocean basin-scale processes, they are also responding to 
localized ocean circulation patterns and wind stress, and the spatial 
extent of cool-water habitat generally reflects the spatial extent and 
distribution of high primary and secondary productivity that is favor
able for many higher trophic species in the CCLME (Santora et al. 2021). 
Therefore, area-based time series of thermal habitat may provide rapid 
assessment of habitat suitability impacted by climate variability and 
change that broad scale indices may not capture. We refer to the 
normalized area of “cool-water” thermal habitat within an upwelling 
ecosystem as the habitat compression index (HCI). 

Here we develop the HCI as a regional-scale indicator for informing 
dynamic ocean management (Maxwell et al. 2015; Santora et al. 2020), 
constructed to describe the area of cool waters over the coastal-pelagic 
habitat along the continental shelf of the CCLME. As thermal regimes 
and coastal upwelling processes vary geographically throughout the 
CCLME, we describe and discuss the use of four regional HCIs within the 
CCLME. Output from a data-assimilative regional ocean circulation 
model (combined historical reanalysis and near real time models; Moore 
et al. 2011, Neveu et al. 2016) is used to develop the HCI. To benefit 
replication in ecosystems without operational regional ocean models, 
we show how the HCI may be easily calculated from standard gridded 
SST fields. We also show that cool-water habitat indexed by the HCI 
extends to the mixed layer and is not just a surface feature. 

Historically, regional upwelling and the basin-scale SST-based PDO 
index have been two main indicators used to inform ecosystem pro
ductivity in the CCLME (Weber et al. 2021). For example, traditional 
upwelling indices and estimates of nutrients upwelled in the water 
column are used to examine variability (daily to interannaual) and non- 
linear relationships between winds and Chl-a production (Jacox et al. 
2016, 2018). In contrast, the PDO index is resolved monthly and rep
resents basin-spatial scale fluctuations of North Pacific thermal habitat, 
including that in the eastern North Pacific Ocean (Mantua et al. 1997), 
and informs potential changes in marine species productivity and dis
tribution (e.g., copepods and salmon – Peterson et al. 2014; Sardines and 
Anchovies – Chavez et al. 2003). During the 2014–2016 MHW, wind- 
based upwelling indices were close to average within the CCLME, yet 
the offshore extent of cool upwelled water was highly compressed along 
the coast, resulting in marked changes in pelagic species distributions 
(Santora et al. 2017, 2020). Therefore, the HCI may better capture 
variability of temporal and spatial extent of cool water conditions than 
basin-scale indicators like the PDO index, and inform regional vari
ability of marine ecological structure. In this study, we explore this 
concept by comparing the HCI with the PDO and upwelling indices, and 

with micronekton species abundance, distribution and biodiversity 
indices (Santora et al. 2017, 2021a). Ecological productivity has been 
hypothesized to vary regionally based on the cumulative sum of up
welling from the winter into the spring upwelling season (Schroeder 
et al. 2013; Wells et al. 2017; Santora et al. 2021a). As a CCLME 
application, we examine whether the HCI or standard regional indices 
(e.g., upwelling and sea level) during the winter correlate more strongly 
with abundance and variability of krill, anchovy and pelagic biodiver
sity during the spring at regional scales. 

Ecological indicators should be straightforward to interpret, have 
clear thresholds, and be easy to monitor in near real time to inform rapid 
assessment of environmental changes within an ecosystem (Rice and 
Rochet, 2005). Communication of ecosystem indicator status is further 
strengthened if it is easily translated to a diverse group of stakeholders, 
especially in complex socio-economic systems like fisheries that involve 
management of living marine resources and human activities. In that 
regard, the HCI provides ecosystem context that, combined with basin- 
scale climate indices, offers a regionalized index for monitoring coastal 
thermal habitat associated with coastal pelagic ecosystem shifts. We 
discuss the application of the regional HCI for communicating ecosystem 
context for mitigating risk of whale entanglement in fixed gear fisheries, 
and potential challenges arising from impacts of ephemeral events such 
as MHWs. Finally, we describe a web-based tool for viewing monthly 
spatial and temporal habitat compression patterns in the CCLME. 

2. Methods 

2.1. Regional ecosystem indicator context 

Upwelling onset and intensity vary greatly over the CCLME (Bograd 
et al 2009), with bathymetric and orographic features influencing up
welling and oceanic currents (Hickey 1998, King et al. 2011, Ware and 
Thomson 2005). Points and capes can locally intensify upwelling and 
submarine canyons can be conduits for subsurface nutrients into the 
surface layer (Hickey and Banas, 2008). Regional differences in 
geographic features, canyons, and oceanic features result in contrasting 
ecosystem states that can be thought of as unique biogeographic prov
inces (Checkley and Barth, 2009; Table 1). Each of these regions also 
have unique epipelagic species assemblage, abundance and diversity 
patterns (Peterson et al. 2013; Ralston et al. 2015; Friedman et al. 2018). 
For regional fishery and ecosystem management context, the CCLME 
between 30 and 48◦N is presented here as 4 biogeographical regions that 
extend south to Baja California (Table 1; Supplemental Fig. S.1). We 
chose to place the boundaries of these regions either to the north or 
south of major coastal promontories to account for the location of strong 
upwelling centers and retention zones both upstream and downstream. 
For example, boundaries are not placed directly at Cape Blanco, Cape 
Mendocino, or Point Conception, because upwelling centers would be 
cut in half and effects of retention to the north/south of these regions 
would likely misrepresent the extent of habitat compression dynamics 
within and among regions (for location of strong upwelling winds see 
Supplemental Fig. S.1). The 150 km offshore extent of the regions covers 
continental shelf and slope habitats, and is predetermined to account for 
the extent of upwelling habitat and influence of offshore oceanic waters 
(Jacox et al. 2018) (Fig. 1a). Over a majority of the CCLME the shelf is 
within 75 km of the shore (excluding islands, see red line Fig. 1a). This 
75 km offshore extent is a region of positive vertical velocities (up
welling) and higher nitrate and chlorophyll concentrations during the 
climatological upwelling season (Jacox et al. 2016). In addition to strong 
latitudinal changes in sea surface temperature, there are gradients in 
wind forcing, with generally greater seasonality to wind stress and pri
mary/secondary productivity in northern regions and weaker season
ality in the southern regions. 
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2.2. Oceanographic model output 

The regional HCIs use 2 m temperature (T2m) data from two com
plimentary data-assimilative oceanic models of the CCLME (https: 
//oceanmodeling.pmc.ucsc.edu/, Moore et al. 2011, Neveu et al. 
2016). The models assimilate in situ hydrographic data and satellite 
observations for high spatial resolution on sub-daily time scales, 
providing an effective interpolation framework of sparse hydrographic 
observations or missing satellite temperature observations due to cloud 
coverage. Two time periods are included in this study, a 31 year period 
over 1980 to 2010 and a 10 year period from 2011 to December 2020. 
The model covering 1980–2010 is called WCRA31 and the model from 
2011 to 2020 is called the Near Real Time (NRT). The NRT is updated 
daily and the output is served operationally by UCSC (oceanmodeling. 
ucsc.edu). The surface-oriented temperature data served by Central 
Northern California Ocean Observing System (CeNCOOS; https://www. 
cencoos.org/) is on standard depths of 2, 5, 10, 20, 40 m and every day a 
run is performed over the preceding four days and estimates are made 
available on the CeNCOOS data portal. Offshore in deeper water (e.g., 
4000 m) there are no temperature data at 2 m due to the conversion 
between the 42 sigma levels to actual depth levels. In the situation 
where a temperature profile is missing 2 m values the available profile is 
extrapolated to the 2 m level using the scipy.interpolate.interp1d routine 
in Python 3.6. 

Surface temperatures are consistent between the two models and 
have been integrated through time in ecological studies investigating 
marine species distributions (Becker et al. 2016; Brodie et al. 2018; 
Abrahms et al. 2019; Cimino et al. 2020). However, temperature data 
below 2 m depth can have biases between the two models (Neveu et al. 
2016; Brodie et al. 2018), consequently all subsurface temperature data 
used in this analysis consists of output from the WCRA31 model for 1980 
to 2010 to avoid consistency issues. Subsurface analysis is used for 
model evaluation purposes but is not needed for real-time HCI 
calculation. 

Temperature data is extracted from model output based on the dis
tance from shore. Two distance from shore masks were created: a 75 km 
mask was used for identifying monthly thresholds and a 150 km mask 
for calculating the HCI. The distance from shore mask is created from the 
ROMS land mask file, which distinguishes all grid points as either water 
or land. The distance from shore masks are created by finding all grid 
points that are located 75/150 km from any coastal edge land grid 
points, excluding islands. 

2.3. Habitat compression Index 

The HCI is resolved on monthly scales and monthly means of T2m are 
created from daily output from WCRA31 and NRT models. There are 2 
steps to the calculation of a regional HCI: 1) establish 31 year 
(1980–2010) climatological monthly temperature thresholds and 2) 
estimate the area of T2m in each region that falls below that region’s 
climatological monthly temperature threshold for each month. Clima
tological monthly thresholds are needed in each region to account for 
seasonal and meridional temperature differences in the regions (Huyer 
1983; Hickey et al. 1998). The first step uses temperature data over a 
climatological time period (1980–2010). This allows for temperature 
thresholds to be calculated once and avoids recalculating thresholds 
when the temperature dataset is updated with new monthly means. 
Importantly, with secular ocean surface warming trends expected to 
continue, baseline periods will need to be reevaluated and updated in 
the future (Xiu et al. 2018). 

All T2m time series at grid locations within a region up to 75 km 
offshore are spatially averaged to obtain one time series for the region. A 
monthly mean climatology for the region is calculated from this time 
series by averaging all values for a given month over the 1980–2010 
time period. The monthly values are rounded to the nearest half-degree 
and represent temperature thresholds for calculating the HCI for each 
region (Fig. 2a). The second step is done for every month from 1980 to 
present and results in a time series of monthly areas - this is the HCI time 
series. The monthly areas are the sum of all grid-point areas in each 
region (within 150 km of shore) that fall below the monthly threshold 
normalized by the total area of the region (Fig. 2b). This normalization 
enables comparison of HCIs across regions and across EBUSs. The 
resulting HCI has a minimum of 0 (no cool-water habitat) and a 
maximum monthly value of 1 (cool habitat over the entire region). For 
the full time series, the mean and ± 1 standard deviation, provides a 
quick reference for inferring low, medium and high compression states. 

Upwelling conditions and spatial extent of cold water can vary 
substantially at monthly scales (Jacox et al. 2018). We present a diag
nostic tool for monitoring progression of the HCI within each region to 
track changes in the HCI and provide comparison among years. For 
example, this allows comparison of how the HCI varies during periods 
characterized by anomalously warm and cool conditions. The progres
sion of HCI values over a yearly interval is analyzed by constructing a 
cumulative HCI curve for a given year. The yearly cumulative curve is 
the sum of all yearly values over January to December within that year. 
Since the monthly HCI has a maximum value of 1, the cumulative sum 
ending in December can be a maximum of 12. The cumulative HCI is 
comparable to the cumulative upwelling index (CUI) and provides a 
similar indicator of sustained physical conditions on ecosystem pro
ductivity (Bograd et al. 2009). 

Although the ocean model assimilates satellite observations, it is still 
important to compare HCIs derived from the model and other gridded 
SST products. This is because direct computation from gridded SST fields 
offers an alternative source for updating HCI values for operational 
purposes. Further, we recognize that regional data-assimilative ocean 
models are not available in all parts of the world ocean, so demonstra
tion of the index using existing publicly available gridded SST fields will 
benefit those needing to monitor habitat compression in other marine 
ecosystems. As a validation of T2m output from the ROMS models, the 
regional HCI is compared to indices constructed from NOAA’s Optimal 

Table 1 
The four Habitat Compression Indices describe the area of cool water in unique 
biogeographical provinces in the California Current Large Marine Ecosystem. 
The area of cool water is calculated for regions between the latitudinal ranges 
(Latitude Range column) and from the shore out to 150 km.   

Latitude 
Range 

Geographic Features Canyons Oceanic 
Features 

Region 
1 

48 to 
43.5◦N  

• Juan de Fuca/ 
Columbia River  
• Relatively smooth 

coastline, wider 
shelf in the north 

Several large 
canyons  

• Upwelling 
and 
freshwater 
plumes 
interaction  

• Summer 
hypoxic 
events 

Region 
2 

43.5 to 
40◦N 

Large coastal 
promontories (Cape 
Blanco in the north 
and Cape Mendocino 
in the south) 

Many small 
canyons  

• Strong 
upwelling at 
capes  

• Retention 
between the 
capes 

Region 
3 

40 to 
35.5◦N  

• Smaller coastal 
promontories 
(Points Arena and 
Reyes)  

• San Francisco and 
Monterey Bays  

• Monterey 
Bay 
Canyon  

• Extensive 
canyon 
habitat  

• Strongest 
upwelling at 
Point Arena  

• Retention in 
Gulf of 
Farallones 
and Monterey 
Bay 

Region 
4 

35.5 to 
30◦N  

• Point Conception 
headland  

• Southern 
California Bight  

• Channel Islands  
• Offshore basins 

No canyons  • Strong 
upwelling at 
Pt Conception  

• Retention in 
the bight  
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Interpolated SST that is based on satellite, ship, buoy and Argo float 
observations (Huang et al. 2020). We also analyzed temperature data at 
various depths to verify the consistency in HCI at selected depths be
tween 2 and 40 m. 

2.4. Comparison to environmental and ecological indicators 

The HCI is compared to basin-scale indices that reflect environ
mental conditions in the Northeast Pacific (PDO Index; North Pacific 
Gyre Oscillation, NPGO Index) and the tropical Pacific (Oceanic Niño 
Index, ONI), and indicators of regional conditions (e.g., sea level height 
and coastal upwelling). The PDO Index (Mantua et al. 1997), ONI 
(metadata found at https://origin.cpc.ncep.noaa.gov/) and NPGO Index 
(Di Lorenzo et al. 2008) are monthly resolved with data lengths longer 
than the HCI. Sea level was derived from 4 coastal tidal gauges 
(9435380 South Beach, OR; 9419750 Crescent City, CA; 9414290 San 
Francisco, CA; 9410170 San Diego, CA) that have measurements before 
1980, with one contained in each HCI region. The monthly tidal gauge 
data was downloaded from https://tidesandcurrents.noaa.gov/, which 
provided monthly mean sea level (Monthly_MSL) and an estimated long- 
term trend (Linear_Trend) (see Sweet et al. 2017 and reference within); 
for this analysis detrended time series were constructed by subtracting 
the long-term trend from the monthly mean sea level. The Coastal Up
welling and Transport Index (CUTI) and Biologically Effective Upwell
ing and Transport Index (BEUTI; Jacox et al. 2018) are an estimate of 
coastal upwelling at 1◦ intervals between 31 and 47◦N, with CUTI 
providing estimates of nearshore vertical transport and BEUTI estimates 

of nearshore vertical nitrate flux. Region specific CUTI and BEUTI time 
series were created by averaging all 1◦ CUTI or BEUTI time series within 
each of our four regions. From the northern CCLME, the Northern 
copepod biomass anomaly (monthly observations since 1996; from 
monitoring off Newport, OR), is an indicator for the transport of sub
arctic waters into the northern CCLME, as northern copepods originate 
from the Gulf of Alaska (Peterson and Miller, 1975; Fisher et al., 2015). 
All monthly time series were examined for seasonality and anomaly time 
series were created by subtracting the monthly climatological value for a 
given month. Anomaly time series for the correlation analysis had linear 
long-term trends removed by least-square regression. Comparison be
tween these indices and HCIs were done using Spearman’s rank corre
lations and significance was determined at p < 0.01. 

Additional ecological evaluation of the HCI is made by comparison 
with a subset of indicators known to vary with changes in ocean and 
climate dynamics that in turn provide context on ecosystem function 
and state (Peterson et al. 2013; Santora et al. 2017, 2021a, b). Ecological 
connections with the HCI are presented for evaluating and refining hy
potheses pertaining to mechanisms impacting ecosystem structure 
(Santora et al. 2021a). For this evaluation, ecological data is used from 
the Rockfish Recruitment and Ecosystem Assessment Survey (RREAS), 
which has the longest sampling history within Region 3. The RREAS 
monitors epipelagic micronekton using a mid-water trawl towed for 15 
min targeting a 30 m headrope depth; Sakuma et al. 2016; Santora et al. 
2021). We focus on the long-term time series from a subset of consistent 
sampling of 34 stations within the Greater Gulf of the Farallones and 
Monterey Bay (between 36.6 and 38.2◦N) in late spring (May-June). 

Fig. 1. Geography, bathymetry and seasonal sea surface temperature climatologies for the California Current Large Marine Ecosystem: (a) bottom depths out to 150 
km from the coastline; this area consists of the continental shelf, slope, and submarine canyons. The four regions mark biogeographical provinces where Habitat 
Compression Indices (HCI) are calculated. The red line equidistant to the coast is 75 km from shore (excluding islands), and this area is used in defining monthly 
thresholds required in calculating the HCI. (b) Seasonal climatology of sea surface temperatures. The climatology was constructed from 2 m temperature time series 
extracted from a data-assimilative ROMS over 1980 to 2010. (For interpretation of the references to color in this figure legend, the reader is referred to the web 
version of this article.) 
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Most species encountered by the survey have been identified and 
enumerated for every net trawl conducted since 1990, allowing for 
abundance estimates based on catch per unit effort (CPUE) and calcu
lation of biodiversity metrics such as Shannon-Weaver Diversity (San
tora et al. 2017). Time series of krill and anchovy abundance were 
developed based on generalized linear models as in Santora et al. 
(2021b), while diversity indices are updated based on methods in San
tora et al. (2017). 

We compare the HCI with both the spatial mean and coefficient of 
variance (CV) to assess whether thermal habitat area relates to changes 
in abundance (or diversity) and heterogeneity of the indicator. Total 
krill is dominated by two species, Euphausia pacifica and Thysanoessa s
pinifera, and northern anchovy consists of both young-of-the-year (YOY) 
and adult catches. The forage diversity (Shannon-Weaver) index in
cludes coastal and mesopelagic fish and squid, totaling 49 taxa (Santora 
et al. 2017). Total diversity is calculated from the CPUE of all 111 taxa 
consistently caught in RREAS mid-water trawls, including YOY rockfish 
and other groundfish, the forage species described above, and several 
other well enumerated taxa. All data are available at https://oceanview. 
pfeg.noaa.gov/erddap/tabledap/. 

Wind-driven upwelling is hypothesized to have a cumulative effect 
on regional ecosystem productivity and structure in EBUEs (Bograd et al. 
2009). Historically, the Cumulative Upwelling Index (CUI; Schwing 
et al. 2000; Bograd et al. 2009) has been used as an index of this pro
ductivity, with winter values being better aligned with spring produc
tivity due to ‘pre-conditioning’ effects on the ecosystems (Schroeder 

et al. 2013). Here, we test if productivity associated with the distribution 
and aggregation of fish and krill are more associated with traditional 
indices or the HCI based on the cumulative effect of the expansion or 
contraction of thermal habitat along the coast. We test this by con
structing 4 cumulative time series, based on daily BEUTI, CUTI, sea level 
and the HCI. The BEUTI and CUTI time series are created by latitudinally 
averaging all daily time series between 36 and 40◦N to obtain a single 
time series. The sea level time series is from a tide station at San Fran
cisco, CA (previously discussed at stat of this section). Then the cumu
lative sum from January through February is computed for each year, 
resulting in a final annual cumulative BEUTI (cBEUTI), CUTI (cCUTI), 
and Sea Level (cSea Level) time series. The cumulative time series are 
correlated against the RREAS time series using Spearman’s rank corre
lations and significance was determined at p < 0.05. 

3. Results and discussion 

3.1. Regional and seasonal habitat compression indices 

Regionally and monthly resolved temperature thresholds are neces
sary in the CCLME due to the large meridional temperature gradients 
and spatially-varying seasonal cycle in surface temperature (Fig. 1b, 2a, 
Supplemental Fig. S.2). The difference between northern and southern 
extremes can vary by 6 ◦C in winter and 4 ◦C in summer. At the scale of 
the CCLME, temperature gradients are predominately meridional in the 
winter and spring, with cooler temperatures to the north, although there 

Fig. 2. Graphical illustration example on how the Habitat Compression Index is calculated based on temperature thresholds: (a) Monthly climatologies and tem
perature thresholds used for the four Habitat Compression Indices. The monthly climatology (solid lines and circles) are derived from monthly time series 
(1980–2010) of spatially averaged temperatures at 2 m over the region’s latitude range and extending out to 75 km from shore. The labeled temperature thresholds 
are the corresponding monthly climatological value rounded to the half degree. (b) An example HCI calculation for Region 3 on June 2014. The contour is the 
monthly mean of surface temperatures extending out to 150 km from the shore. The HCI value is the area below the 12.5 ◦C June temperature threshold normalized 
by the total area of the region. 
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is a strong zonal temperature gradient in the Southern California Bight. 
Upwelling during the summer and fall results in zonal gradients of cooler 
water nearshore, with the largest gradients in Regions 2 and 3 (Fig. 1, 
Supplemental Fig. S.2). In Region 4, temperatures north Pt. Conception 
(~34.5◦N) are consistently cooler by over 1 ◦C than temperatures in the 
Southern California Bight. When zonal SST gradients are weak, HCI 
values may be less informative for monitoring a habitat compression 
impact. However, rapid changes (over a month) during an ocean warm 
event (heatwave or El Niño) may alter the anisotropy of habitat 
compression and create different warm and cool spatial patterns within 
and among regions. Regardless, the area of cool thermal habitat can vary 
spatially, extending in both meridional and zonal gradients, which re
inforces the necessity to evaluate the HCI as a time series and as a 

mapped product. 
Monthly climatologies of spatially averaged (from shore out to 75 

km) T2m have the expected seasonal cycle of cooler temperatures in 
winter and spring and warmer values during summer and fall (Fig. 2a). 
Over the four regions, December through May climatological values are 
the most consistent, with values generally within 1 ◦C of each other. The 
largest increase in temperatures occurs during June to September, with 
up to 1.5 ◦C between months (seen in Regions 1 and 4). A similar pattern 
occurs over September to October but for decreasing temperatures. 
Regions 1 and 4 have the greatest differences between the coolest and 
warmest months (~5 ◦C), while the difference is only around 3 ◦C for 
Regions 2 and 3. The ranges of temperature differences between months 
and over regions highlights the necessity for monthly and regionally 

Fig. 3. Long-term regional variability of habitat compression indices: (a) Monthly Habitat Compression Index (HCI) time series shown for the four regions in the 
CCLME. The HCI denotes the amount of area covered by temperatures below a monthly temperature threshold, with ‘0′ indicating no area and ‘1′ total coverage. 
Dashed line is the mean and solid lines are ±1 standard deviations. Three separate two-year intervals (1998–99, 2005–06, and 2013–14) are marked to show HCI 
transitions during recent years of significant ecological impacts. These years were selected for illustration purposes to highlight marked change during a strong El 
Niño to La Niña (98–99), a period of delayed upwelling (05–06) and a period of record upwelling before the start of the large marine heatwave (13–14). (b) Cu
mulative Habitat Compression Index (cHCI) for the four regions. Each year (1980–2020) has a unique cumulative curve and is constructed by the cumulative sum 
over the twelve months of the year. The cumulative index approach allows for monitoring the rate of change of cool thermal habitat and provides information on 
changes from winter to spring (preconditioning effects on ecosystem). The maximum value of a monthly HCI is 1, with the maximum value of the cumulative curve at 
December being 12. The six years highlighted in plot (a) are drawn with the highlight color and labeled, while all other years are colored grey. 
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resolved temperature thresholds. To highlight this, an example HCI 
calculation is considered over June 2014 for Region 3 (Fig. 2b). The 
Region 3 temperature threshold for June is 12.5 ◦C and temperatures 
falling below this threshold cover 29,177 km2 out of a total 89,418 km2, 
resulting in an HCI value of 0.33. Region 4 has a June temperature 
threshold of 16.5 ◦C and if this is applied to Region 3 for June 2014 then 
the resulting HCI will be 1 since all temperature values in the region fall 
below the threshold. 

The HCI for the northern two regions have larger standard deviations 
(0.30 for Region 1 and 0.32 for Region 2), while the southern region has 
the smallest (0.18), consistent with the weaker seasonality in upwelling 
and temperature regimes from north to south (Fig. 3). The HCI long-term 
mean in Region 4 is 0.47 and is the closest to 0.5, while the other regions 
all have means below 0.41. The HCI among regions are highly correlated 
with the highest correlations occurring between adjacent regions, and 
with winter and spring time series having higher correlations than 
summer and fall (Supplemental Fig. S.3). These results are consistent 
with Mueter et al. (2002), who found that spatial correlations for both 
NE Pacific upwelling and sea surface temperatures were strongest dur
ing winter months and weakest during summer months. The HCI 
calculated from NOAA’s optimally interpolated SST yield consistent 
time series with ROMS model output (Spearman’s ρ values above 0.9, 
with the lowest correlation of 0.84 during the summer in Region 3; 
Supplemental Fig. S.4). Therefore, a HCI can be easily estimated from 
other gridded SST data products and applied in other EBUSs to benefit 
ecological investigations. 

3.2. Habitat compression and mixed layer depth 

Unique HCIs are constructed for depths of 2, 10, 20, and 40 m, as 
these depths represent average seasonal extent of the mixed layer depth 

(MLD) within the CCLME (Fig. 4). The MLDs of the near-coastal CCLME 
are deeper in winter and spring and shoal during summer and fall 
(Fielder 1988, Fielder et al. 2013). In general, the MLDs estimated by 
Fielder (1988) are between 20 and 40 m during winter and spring, and 
between 14 and 20 m during summer and fall. Time series of HCI by 
depth have the most similarity between the 2 and 10 m time series, with 
the correlations weakening for the 20 and 40 m time series (Supple
mental Figs. S.5, S.6). Winter and spring time series have high correla
tions over all depths to 40 m, while summer and fall have the highest 
correlations between the 10 and 20 m time series. The 40 m time series 
have the lowest correlations with the 2 m time series in summer and fall 
(ρ ranges 0.6 to 0.8), seasons where the MLDs are above the 40 m level. 
The HCI at 2 m has the largest difference compared to other depths 
during the last seven years (Supplemental Figs. S.5, S.6), a period 
impacted by a prolonged MHW (Jacox et al. 2018b). During this period, 
the HCI at 2 m during summer and fall is smaller than the HCI based on 
temperatures at depths of 10 m, 20 m, and 40 m. However, it should be 
noted that the MHWs occurred during the running period of the NRT 
ROMS and the divergent HCIs over the depths could be associated with 
inconsistencies between the two ROMS models. Nevertheless, the com
parison of compression indices over several depths up to the average 
MLD suggests the HCI is consistent over space and time, and across the 
depth dimension (i.e., not just the surface). This is important because 
species distribution models often use satellite sea surface temperature 
even though those species are likely to respond to changes across the 
MLD range and deeper. 

3.3. Habitat compression as an indicator of climate variability 

For over 40 years, the regional HCI time series display marked 
coherence, with consistent inter-annual variability and response to 

Fig. 4. Habitat compression index comparison by region (figure rows) over the mixed layer depth, with the comparisons done with four depths down to 40 m. The 
time period is from 1980 to 2010 covering the climatological time period of the ROMS historical model. The comparisons are done by season (columns) to best 
capture the seasonality of the changing mixed layer across the California Current as the MLD shifts to shallower depths during the summer from the deepest depths 
during the winter. For each depth a unique HCI was constructed using the same temperature threshold monthly selection methodology as for the surface (2 m) HCI. 
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climate events such as several tropical ENSO events and prolonged 
MHWs (Fig. 3). Here we highlight several prominent climate events that 
occurred in the CCLME during the study period along with the response 
of the HCI. The monthly progression of HCI values have the greatest 
shifts during ENSO transition periods with values shifting from 0 (a 
tropical El Niño year) to 1 (a tropical La Niña year) over a two-year 
period (see shaded area over 1998–99; Fig. 3a). El Niño and La Niña 
produce extensive ecological impacts in the CCLME due to deepening 
and shoaling of the nutricline (Bograd and Lynn 2001) and upper ocean 
warming and cooling, respectively (McClatchie et al 2016). Other two- 
year periods of unusual ecosystem dynamics in the CCLME were 
2005–06 and 2013–14 (shaded regions; Fig. 3a). The 2005–06 HCI 
values mostly fall within one standard deviation of the mean, with very 
few months (Region 3 October 2005 and March and September 2006) 
above one standard deviation. Starting in late 2004 and early 2005 all 
regions experienced HCI values more than one standard deviation below 
their long-term mean. There were 1–3 month delays in the onset of 
seasonal upwelling during 2005 and 2006 that resulted in major popu
lation declines of many forage species, particularly YOY groundfish, 
market squid and krill (Ralston et al. 2015). These in turn contributed to 
reproductive failures for many seabirds, unusual marine mammal dis
tributions, and later economic fishery disaster declarations associated 
with poor adult salmon run-sizes returns (Sydeman et al. 2006, Weise 
et al. 2006, Lindley et al. 2009). Over 2013–14 the HCI transitioned 
from high to low cool-water habitat area due to the influences of an 
expanding MHW (Jacox et al. 2018b, Santora et al. 2020). The HCI 
values progressed from over one standard deviation at the start of 2013, 
a year of very strong upwelling, and finally reached values near 0 at the 

end of 2014 when the MHW had major impacts on the CCLME (Di 
Lorenzo and Mantua 2016). 

As a measure of thermal habitat that is relevant for monitoring 
ecosystem state and fisheries, the annual evolution of the HCI can inform 
dynamic ocean management in the CCLME. Cumulative HCI curves were 
constructed for all years and regions, with the same two-year periods of 
1998–99, 2005–06, and 2013–14 to highlight the yearly progression of 
habitat compression and expansion (Fig. 3b). The cHCI over 1998 
spanned a transition period from a strong tropical El Niño to La Niña, 
had a low amount of cool-water habitat during winter 1998 and the 3 
northern regions had HCI values of 0 through the winter (January- 
March in Region 3) and early spring (January-April in Region 1 and 2). 
HCI values increased after spring 1998, tracking the transition from El 
Niño to La Niña conditions (Chavez et al. 2002; Bograd and Lynn, 2001), 
and winter and spring 1999 HCI values were near 1 resulting in 1999 
having one of the highest December cHCI values. This is consistent with 
observations of unusually strong coastal upwelling and low sea surface 
temperatures throughout most of the CCLME during the spring and 
summer of 1999 (Schwing et al. 2000). Both 2005 and 2006 have similar 
annual cHCI values and are near the median range across all years. 
However, winter and spring 2005 and 2006 both started off with very 
small HCI values, then rapidly transitioned to larger HCI values during 
summer and fall. During 2013, large values of the cHCI (for each region) 
over January to March were similar to 1999, but low HCI values during 
summer resulted in final December cHCI values smaller than in 1999. 
January and February 2014 had high HCI values, especially in Regions 1 
and 2, but the rest of the year had very low HCI values, resulting in 2014 
having a similar cHCI December value as 1998. The development of the 

Fig. 5. Comparison of the Habitat Compression Indices to basin-scale and regional indicators of oceanographic variability in the CCLME and to the abundance, 
distribution and diversity of key forage species in the central CCLME. (a) Correlations between regional HCIs and monthly physical basin-scale indicators (ONI, PDO, 
NPGO), an indicator of subarctic transport (northern copepod biomass anomaly), spatial average of upwelling (CUTI and BEUTI) in each HCI region, and Sea Level 
measure by tidal gauges in the four HCI regions. (b) Correlations between annual spatial mean biological time series and January to February cumulative values of 
the regional indicators: cHCI, cCUTI, cBEUTI, and cSea Level. (c) Correlations between annual coefficient of variance (CV) biological time series and the same 
cumulative time series used in table (b). Biological data are from an ecosystem survey (RREAS) that samples during late April through June at stations located in 
Region 3. Correlations are Spearman’s rank correlations. All correlations are below p < 0.01 for plot (a) and p < 0.05 for plots (b) and (c), except those labeled with 
grey text. 
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marine heatwave (the “Blob”) during 2013 and 2014 (Bond et al 2014) 
resulted in low HCI due to the intrusion of warm off shore waters onto 
the shelf causing fluctuations and distribution shifts of humpback 
whales’ prey (Santora et al. 2020) and consequent management chal
lenges for the economically important Dungeness crab fishery (Sam
houri et al 2021). 

The 4 regional HCIs were compared to three basin-scale indices (PDO 
Index, ONI, and NPGO Index), and the PDO Index had the highest cor
relations (Fig. 5). The PDO Index correlations were negative, implying 
that a negative-cool phase of the PDO is related to a larger HCI value. 
ONI and HCI correlations were around − 0.3, capturing the tendency for 
smaller HCI values during an El Niño event (Fiedler and Mantua 2017). 
The NPGO Index had a positive correlation with the HCIs and high 
habitat (large HCI values) are associated with an increased equatorward 
flow within the CCLME that is evident during positive NPGO phases (Di 
Lorenzo et al. 2013). Interestingly, the southern Region 4 HCI had the 
strongest relationship with the NPGO, as positive NPGO values are 
associated with a deeper upwelling cell in the southern CCLME resulting 
in more vertical mixing of cooler, deeper waters into the surface layer 
(Di Lorenzo et al. 2008). Sea level time series have a negative correlation 
with the HCIs, and CUTI and BEUTI have a positive relationship. Low sea 
levels and strong upwelling occur during an expansion of cool-water 
habitats, and vice-versa. Sea level in Region 4 has the highest correla
tion with the HCI of all of the basin and regional physical indices with a 
Spearman’s ρ of − 0.71 (p < 0.01). The correlations with BEUTI are 
higher than CUTI, which is expected due to BEUTI being more closely 
related to temperatures within the mixed layer (Jacox et al. 2018a). 

3.4. Biological impacts of varying habitat compression 

The HCI has been used by management as a spatial indicator for 
monitoring ecosystem shifts and species interactions (Santora et al. 
2021). Here we compare the HCI with several biological indices that are 
included in annual reports on ecosystem status and trends to provide 
ecosystem context to the Pacific Fisheries Management Council (PFMC; 
Harvey et al., 2020). The ecological evaluation of the HCI should be 
framed as a hypothesis in order to accumulate additional support for 
monitoring ecosystem shifts in coastal upwelling systems and devel
oping additional process-based studies involving species assemblage and 
indicator species analyses. Here we highlight several ecological indices 
to assess the hypothesis that cool water habitat compression impacts 
pelagic biodiversity and ecosystem function in the CCLME. 

The northern copepod biomass anomaly time series is related to the 
PDO Index and salmon productivity (Peterson and Schwing 2003, 
Peterson et al. 2014), and has a positive correlation with the HCI over 
the four regions (Fig. 5a). The cool phase of the PDO corresponds with 
higher HCI (expanded cool habitat) and increased northern copepod 
species richness. Biological time series from the RREAS trawl consist of 
both spatial mean and coefficient of variance (CV; Supplemental 
Figs. S.7, S.8, S.9, S.10). The CV is an indicator of variance among 
biological survey locations within regions, with a lower CV occurring 
during years of uniform (less heterogeneity) spatial abundances (or di
versity). The mean and CV time series are correlated against time series 
representing the cumulative effects of thermal habitat size (cHCI), up
welling intensity variables (cCUTI and cBEUTI) and sea level height 
(cSL). 

The cHCI time series analysis had significant correlations against all 
ecological time series and the magnitude of the correlations were higher 
than traditional upwelling indices and sea level (Fig. 5b). The higher 
cHCI correlations suggest that cumulative (over January to February) 
thermal habitat is a better early indicator of abundances, diversity, and 
heterogeneity for the example species than cumulative upwelling over 
the same time period. Since cHCI has a better fit, the remaining dis
cussion of the results will focus on the correlations with cHCI. 

Here we show an example of how the cumulative cool thermal 
habitat area over January to February relates to epipelagic forage 

species abundances, diversity and spatial variance within central Cali
fornia (Fig. 5b-c). Northern anchovy relative abundance has a negative 
correlation with cHCI (ρ = -0.51, p < 0.01), with higher abundance 
sampled during years with less cool thermal habitat. Correlations be
tween the cHCI and krill relative abundance and krill spatial variance 
(CV) are negative, indicating krill are more abundant and spatially less 
variable during years of higher HCI values (Santora et al. 2014, 2021b). 
Total diversity and forage species diversity time series are negatively 
correlated with the cHCI, indicating greater pelagic biodiversity during 
periods of warmer ocean conditions and high habitat compression 
(Santora et al. 2017). However, both diversity CV time series are posi
tively correlated with cHCI (ρ = -0.54, p < 0.01 and ρ = -0.56, p < 0.01; 
respectively), suggesting increased heterogeneity of diversity patterns 
occurs when there is lower habitat compression (less cool thermal 
habitat). We recommend comparing the HCI with other ecological in
dicators as a process to help refine regional mechanisms relating thermal 
habitat area to ecosystem shifts. 

3.5. Implications for ecosystem monitoring and management 

We have shown that the HCI is a meaningful and informative 
ecosystem indicator that describes changes in thermal habitat area 
translating to variability of ecosystem function. We recommend that 
other temperate upwelling ecosystems investigate compression indices 
to measure thermal habitat area relative to ecosystem conditions. Using 
ocean model or observation-based gridded SST data, the HCI concept is 
easily extendable to other ecosystems where it may be desirable to 
monitor thermal habitat variability to inform fisheries and ecosystem 
assessments. Specifically, in ecosystems where krill and coastal pelagic 
species are dominant pathways of trophic transfer, an HCI could be used 
for testing predictions on how ecosystem function may change due to 
natural and anthropogenic climate change and variability. The HCI 
directly indexes habitat used by cool-water species that can lead to 
greater interaction with human activities. 

Large marine heatwaves impact coastal upwelling ecosystems 
through compression of cool thermal habitat closer to the shore (Santora 
et al. 2020). Therefore, the HCI approach may be useful for tracking the 
spatial extent of cool water during marine heatwaves. Between 2013 and 
2021 the Northeast Pacific Ocean experienced episodes of unusual warm 
sea surface temperatures related to multiple marine heatwaves (Bond 
et al., 2015; Amaya et al. 2020) and a large El Niño event that impacted 
the CCLME during fall of 2015 (Jacox et al. 2016) and smaller El Niño 
events in 2018 and 2019 (Thompson et al. 2019). MHWs can cause 
disruptions in CCLME function ranging from persistent harmful algal 
blooms, shifts in copepod community composition and coastal pelagic 
species distribution, and socio-ecological impacts involving fisheries 
and increased human-wildlife interactions such as whale entanglements 
(Cavole et al. 2016; Santora et al. 2020). However, not all was bad for 
CCLME marine life during the 2014–16 MHW as this period coincided 
with record high abundance of young-of-year groundfish (Santora et al. 
2017; Schroeder et al. 2019; Field et al. 2021) and potentially influenced 
substantial recruitment and population growth of northern anchovy 
(Santora et al. 2021). Di Lorenzo and Mantua (2016) concluded from a 
modeling study that the variance in ocean basin-scale patterns associ
ated with marine heatwaves might increase significantly under future 
climate scenarios. We show that within temperate upwelling systems, 
the HCI can track changes in thermal habitat area, either due to MHW or 
shifts in contributions from subarctic or subtropical source waters that 
alter ocean conditions and ecosystem structure (Schroeder et al. 2019; 
Santora et al. 2021). 

We previously demonstrated the importance of the HCI for under
standing and mitigating whale entanglements with commercial Dung
eness crab (Cancer magister) fishing gear that occurred during a 
prolonged MHW (Santora et al. 2020). This fishery is often the most 
economically valuable commercial fishery on the U.S. West Coast. The 
ecosystem synthesis involving the HCI was an integral part in the 
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development of the whale entanglement Risk Assessment and Mitigation 
Program (RAMP). The index was further refined as a management and 
communication tool to support a consortium of stakeholders, ranging 
from fishers, conservation organizations, scientists and fishery managers 
that are dedicated to providing solutions to prevent whale entangle
ments and detrimental impacts to whale populations and coastal fishing 
communities (including people engaged in fishing, processing and other 
related jobs). The HCI helps to inform management decisions regarding 
the opening and closure of the fishery by providing near real time in
formation on how the ecosystem is changing, critical given the complex 
nature of interactions between the fishery, the ecosystem and the pro
tected species (whales) that are disproportionately impacted during 
adverse ocean conditions. As part of this study to extend access to 
ecosystem information, we developed a website that serves the HCI, 
along with other ecosystem information for fishery managers to make 
real time decisions to benefit fishery management on the U.S. West Coast 
(https://www.integratedecosystemassessment.noaa.gov/regions/ca 
lifornia-current/ecosystem-context-reducing-west-coast-whale-entan 
glements). As other fixed gear fisheries can lead to whale entanglements, 
and impacts to fishing opportunities in the Dungeness crab fishery also 
have implications to federally managed groundfish and salmon (among 
other) fisheries, the HCI is also included in the NOAA California Current 
Integrated Ecosystem Assessment’s annual ecosystem status report 
provided to the Pacific Fishery Management Council, highlighting its 
utility to management. 

The phenology of regional SST and associated thresholds described 
in this study provide informative reference points for the ecosystem 
monitoring in the CCLME (Figs. 1-2). Species distribution models often 
indicate that SST is an important predictor of suitable habitat and for 
informing dynamic ocean management and monitoring potential range 
shifts of protected species and fishery resources (Brodie et al. 2018). 
Most marine species distribution models have strong seasonal cycles that 
are due to dependence on SST (Becker et al. 2016; Brodie et al. 2018). 
For example, predictions of suitable anchovy habitat, albacore (Thunnus 
alalunga) habitat expansion and occurrence of blue whales (Balaenoptera 
musculus), all largely depend on the seasonal variability of SST (Muhling 
et al. 2020; Abrahms et al. 2019) and often display pronounced south to 
north progression of predicted suitable habitat within the CCLME. 
However, researchers have not identified regional or basin-wide scales 
of variability associated with the phenology of SST to assess why species 
distributions change the way they do in response to ocean climate 
forcing. Correlative models used to make predictions of habitat suit
ability from SST may overemphasize particular temperature thresholds 
particularly if species show non-stationary relationships with environ
mental predictors. Useful ecosystem indicators can be used in lieu of 
multiple SDMs which be laborious and data-hungry to fit. 

Beyond the thermal habitat compression index, the SST reference 
points we quantified provide a basis for understanding why and how 
species habitat suitability models are expected to have such strong 
seasonal variability throughout the CCLME. If species response to SST 
shows a particular sensitivity or threshold change, then the reference 
points we identified will be useful in developing scenarios on how spe
cies may change in the future. For example, coastal pelagic species, such 
as anchovy, sardine and market squid, have specific thermal ranges that 
are conducive to spawning, which is also an aggregative response to 
available thermal habitat (Reiss et al., 2008, Zwolinski et al. 2011, 
Zeidberg et al., 2011). This baseline phenology of SST information alone 
is useful for understanding species thermal habitat associations and for 
developing climate vulnerability assessments and mitigating tradeoffs 
regarding management of protected species and fished resources. We 
recommend comparison of output from species habitat suitability and 
density distribution models with regional HCIs to refine understanding 
of SST thresholds and ecological structure of coastal upwelling systems. 

The HCI provides measurable and meaningful context for assessment 
of ecological consequences resulting from thermal habitat compression 
within coastal upwelling ecosystems. The unique information of the HCI 

pertaining to thermal habitat area allows us to examine the extent to 
which key biological interactions and processes are compressed in the 
coastal zone. Our ongoing efforts to inform management of the Dung
eness crab fishery with respect to entanglement risk to large whales in 
response to habitat compression and other factors provides an example 
of how this information can be used to help inform management de
cisions. It should be kept in mind that the extension of the HCI to 
assessment of ecosystem function should be cast as hypothesis devel
opment to ensure that evidence can be accumulated for specific research 
questions (Santora et al. 2021). Beyond mitigating whale entanglement 
risk, there are other compression impacts on managed and protected 
species that are associated with compressed cold-water habitat (Wells 
et al. 2017; Cimino et al. 2022). Applications could include assessment 
of impacts of increased overlap between mobile predators, prey, and 
fisheries that favor cold-water habitats, increasing the intensity and 
frequency of interactions in ways that might alter competition, preda
tion rates and recruitment rates, changes in natural mortality rates or 
vulnerability to fisheries. For example, with high compression of cold- 
water habitat, salmon fisheries may operate on what effectively be
comes a smaller ocean for salmon (where West Coast Chinook salmon 
typically feed and are caught in areas with summertime SSTs ~ 
10–14 ◦C), potentially resulting in abnormally high catches for a given 
stock size. Salmon fishery management decisions rely on estima
ted contact rates in sport and commercial fisheries for different age- 
classes and stocks (targeted and protected) in mixed-stock fisheries. 
Such fishery decisions might benefit by considering changes in thermal 
habitat extent (Shelton et al. 2021). Regional reduction of thermal 
habitat may lead to reduced carrying capacity for species dependent on 
pelagic cold-water habitat, including the seasonal migrants (seabirds, 
turtles, marine mammals, and highly migratory species). Ecosystem 
shifts associated with offshore pelagic organisms moving shoreward 
may result in increased presence of tropical/sub-tropical species and 
their increased availability to fishers, such as Bluefin tuna (Thunnus 
thynnus), which show a link between changing distribution and SST 
(Block et al. 2011; Carroll et al. 2021). Such shifts can create new 
human-wildlife conflict affecting fisheries, protected species, and fishing 
communities (Santora et al. 2020). Finally, we recommend that ocean 
climate modelers that develop future projections examine changes in 
habitat compression, especially under different climate scenarios. 
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